Identification of regulatory links between transcription and RNA processing with long-read sequencing
STAR Protocols release
About the Documentation
All tools required for transcriptional couplings can be found in this R packages.
install.packages("devtools")
::install_github("hilgers-lab/LATER")
devtools::install_github("hilgers-lab/LASER") devtools
Preparing the data.
Data analysis starts from the bam files from Long-read sequencing data. Files can be produced using minimap2.
minimap2 -ax splice -u f genome.fa long_read.fastq.gz | samtools sort -@ 4 -o output.bam
LATER
5′-3′ database creation
<- "dm6.ref.gtf"
refExons <- prepareIsoformDatabase(refExons,
isoformData tss.window=50,
tes.window=150)
Complementing reference annotation with databases
<- "TSS_reference_database_dmel.bed"
refTSS <- addPromoterDatabase(refTSS, ref_tss_annot,
isoformData
reference_annotation,window = 50)
Counting full length reads
<- system.file("exdata/testBam.bam", package = 'LATER')
bamPath <- countLinks(bamPath, isoformData) countData
To explore the reads on IGV is possible to subset the alignment .bam
file using the read ids. Export the read ids using:
::write_tsv(readAssignments(countData), "read_assignments.txt") readr
Then go to bash terminal and subset the bam file using samtools command:
samtools view -N read_assignments.txt -o filtered_output.bam output.bam
Estimate promoter dominance
Promoter dominance can be estimated using the following code:
<- estimatePromoterDominance(countData, isoformData, method="chisq") gene_bias_estimates
Data can be explored using following functions
results(gene_bias_estimates)
dominance(gene_bias_estimates)
Additional documentation
Additional LATER documentation can be access via
vignette("LATER")
LASER
For LASER detailed documentation and explanations go here